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A s e m i e m p r i c a l  equation for  the s ingle-point  velocity probabi l i ty  dis t r ibut ion in turbulent  flows ts sug-  
gested and analyzed~ The inert ia  fo rces  in the equations a re  exact ly  exp re s sed  in t e r m s  of probabi l i ty  d i s t r ibu-  
t ions .  The remain ing  t e r m s ,  re la ted  to p r e s s u r e  fo rces  and v iscos i ty ,  a re  not accura te ly  exp re s sed  in t e r m s  
of the t rue  probabi l i ty  dis t r ibut ions ,  and s e m i e m p i r i c a l  express ions  a re  used to approximate  them.  Some 
a r b i t r a r i n e s s  is genera ted  in approximat ing  the p r e s s u r e  t e rm~  It is se lec ted  f r o m  the coincidence condition 
of the cor responding  t e r m s  in the equations for  the second moment s ,  following f r o m  the equation for  the p rob -  
abil i ty dis t r ibut ions and used in the avai lable  s e m i e m p i r i c a l  t heo r i e s .  

One of the main  fea tu res  of the equation obtained is its nonlocali ty,  which a g r e e s ,  at l ea s t  qual i tat ively,  
with con tempora ry  concepts  on laws of turbulent  t r anspo r t .  The energy  diss ipat ion veloci ty ,  the fundamental" 
cha rac t e r i s t i c  of turbulence ,  plays an important  ro le  in the equation. 

The solution of the equation is a normal  dis tr ibut ion in the flow regions  where  the energy  balance of 
turbulent  motion reduces  bas ica l ly  to  genera t ion  and dissipat ion.  This conclusion is in s a t i s f ac to ry  quali tat ive 
ag reement  with exper imenta l  data in a logar i thmic  l aye r .  

1. Basic Equations.  The exact nonclosed equation for  the s ingle-point  probabi l i ty  dis t r ibut ion,  obtained 
in [1-4] f r o m  the N a v i e r - S t o k e s  equations,  is 

ap ap an~ a" a'p O, (1.1) 0-7 + u,~ o ~  a~= + ~ <~,~>,~ p - ~ a % o x  - 

where  P(u, x, t) is the veloci ty probabi l i ty  distr ibution;  t ,  t ime;  Xk, point coordinates  {k=l ,  2, 3); Uk, hydro-  
dynamic velocity;  eij =v[ (0ui /axa) (0uj /0xa) ] ,  instant veloci ty t enso r  of energy  dissipat ion;  v, mo lecu l a r  v i scos i ty  
coefficient;  rrk= (0p/3xk}uP; p, k inemat ic  p r e s s u r e ;  and the symbols  < }, < )u denote, r e spec t ive ly ,  total  (un- 
conditional) averaging  and averaging for  a given value of u. Repeated subsc r ip t s  denote henceforth summat ion  
f rom 1 to 3. 

The f i r s t  two t e r m s  in (1.1) desc r ibe  inert ial  fo rces ,  the third - p r e s s u r e  fo rces ,  and the las t  two - 
viscous fo r ce s .  It is important  that the iner t ia  fo rces  a re  exact ly exp re s sed  in t e r m s  of the t rue  probabi l i ty  
dis t r ibut ion.  This is the main  advantage of using the probabi l i ty  dis t r ibut ion r a t h e r  than avai lable  s e m i e m p i r i -  
cal theor ies  for  second moment s .  As is well  known~ the third moment  approximat ion  is quite compl ica ted in 
these  equat ions .  P r e s s u r e  and v i scos i ty  fo rces  a re  not exact ly  exp re s sed  in t e r m s  of P(U), and t he r e fo re ,  as 
well  as in the s emi em p i r [ ca l  theor ies  for  second moment s ,  the approximat ion of these  t e r m s  r equ i r e s  the in- 
clusion of nonrigid cons idera t ions .  The analogy with kinetic theory  was used with this purpose  in [5-8]. In [8] 
one finds genera l  considerat ions  on the c losure  of these  equations for  f in i te -d imensional  probabi l i ty  d i s t r ibu-  
t ions.  In the p resen t  work  we use a different  var iant  of c losure ,  based on the r e su l t s  of [3, 4]. 

Consider  f i r s t  viscous fo rces .  For  l a rge  Reynolds numbers  and outside regions  immedia te ly  adjacent  
to the walls  (conditions assumed  to be sat isf ied in what follows, the las t  t e r m  in {1.1), descr ib ing diffusion of 
averaged  c h a r a c t e r i s t i c s  due to mo lecu la r  v iscosi ty ,  can be omit ted.  Following [3, 4], for  the quantity <eij}u 
we adopt the hypothesis  

<si.i>u -- (I/3)@>~i~j, e =: ~:~, (1.2) 

where  (e)  is the diss ipat ion veloci ty of turbulence energy.  

The quantity <e ij}u was  exper imenta l ly  m e a s u r e d  [9], where  it was es tabl i shed that (1.2) is a good approx-  
imation, and it has been noted that hypothesis  (1.2) is valid only for a comple te ly  turbulent  fluid. Consequently,  
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account of the intermit tance somewhat changes the equation for the probabili ty distribution. The equations for 
this case were  obtained in [10]. According to [9], the effect of intermittance on the velocity probability dis t r ibu-  
tion is weak, therefore  we use (1.2) at all flow points. 

We turn now to approximating the functions ~k" We separate  in them explicitly the gradient of the mean 
p res su re  ~l~ = (a~p}/0xh)P -~- 6~ .  

The functions &r k are  related only to p res su re  fluctuations and charac te r ize  three p roces se s :  1) energy 
redistr ibut ion of turbulent motion between the different components of the velocity fluctuation vector  due to 
the nonlinear interaction of velocity fluctuations (the contribution of this p rocess  to 6r, k is denoted by ~-1~ )~ ); 
2) energy redis tr ibut ion between different direct ions,  but due to turbulence deformation in the shear  average 
flovr (the corresponding contribution is denoted by ~ ) ) ;  3) energy t ranspor t  in space.  Inthe equation of turbu-  
lent energy the la t ter  p rocess  is descr ibed by the express ion O ( p V v c x ) / O x a ,  pV = p - ( p ) ,  Vk = (u k -  (u~}), the com-  
ponents of the velocity fluctuation vector .  The contribution of this p rocess  to &r k is denoted by ,~l~). Thus, 
6~k=r  ~) +~t~) + 7rk0)~ The third component is the most  important in f ree turbulent flows. It has an essential ly 
nonlocal charac te r ,  which generates  ser ious difficulties in approximating it. At the same t ime,  according to 
experimental  data (see, e.g., [11]), the contribution of the third process  to the total energy balance of turbulent 
motion can be neglected in a number of cases .  In f i rs t  approximation it is fur ther  assumed that 7rk0)=0. 

Following [12], we assume that the relat ion between &r k and P is descr ibed by a differential relation con- 
taining the derivat ives  of P with respect  to u k, but not of higher than f i rs t  order .  The last  res t r ic t ion  follows 
f rom the fact that in the opposite ease the order  of Eq. (1.1) is higher than second, and the qualitative s t ructure  
of its solution will be determined by the t e r m  0 5 a J a u a ,  and not (t/3)<e>O~P/au~, which does not correspond to 
con temporary  concepts on the important role of the rate  of energy dissipation. Fur the rmore ,  the re la t ionbe-  
tween 6rr k and P must  be such that the following conditions be satisfied identically: 

Computational requi rements  do not allow a unique relation between 6rr k and P. The ultimate choice of 
expressions for &r k is made f rom the condition that the express ion for the corre la t ion  (pV(0v i / ax j  + 0vj/0xi) ) 
following f rom it coincide with that used in available semiemptr ica l  theor ies  for  second moments  (see, e.g., 
[13]). We then have (the expression for r~) was ear l ie r  derived in [6]) 

, ~k , = v k P  + u ~ (1.3) 

OU k ~ OP . OUo: t OP OP ~ -  OP '~ 

D1 + D~ + 3C = 0,~ Uh = <uk>, 

where Tij = (vivj} is the Reynolds s t r e ss  tensor ;  o 2 ~ T a ~ / 3 ;  i ' = R-~(e}-'z z , t ime scale of trubulence; and 
R, A, Di, D2, and C, empir ical  constants.  They can be related with the second moments  in a logari thmic layer ,  
writ ing out the la t ter  equations (for this Eq. (1.1) must be multiplied by viv j and integrated over v) and using 
the adopted approximations for 6r, k (1.3), (1.2) (as well known [11], in a log~trithmic layer  energy diffusion and 
convection are  negligibly small) .  After simple calculations,  we obtain 

D~ = 1 ~/~ (2 <u ~> -}- <v 2> - -  3u2)la ~, D~ = " R  (<u'> + 2 (v ~) --  3~)/a~, 

A = [<v2> (1 --  D~) --  <u~> DzI/a  ~ - -  2Ru~ , /a  ~, C = - -  (D~ -F D,)/3.,, 

where  vl =u, v 2 =v, v 3 =w, and u ,  is the fr ic t ion velocity. 

In what fotlows it is convenient to consider  the probabil i ty distribution for the velocity fluctuation vector  
v. We also denote this distribution by P(v). An equation for P(v) is obtained f rom (1.1) after  t ransforming  to 
the new variable v = u  - U. Using the averaged momentum equation 

D U J D t  = - - 0  < p>/Ox, - -  OT,~/Oxa,: (1.4) 
D / D t  = O/Ot -{- UaO/Oxa 

and adopting the approximations for (r and 6~ k, we obtain 

DR . OP __{  OYap OUp T - I V  "~ OP ~ O'P (1.5) 

D ~  T- 'o  ~ C _ _  T ~ - -  <~> ~ + ~- 
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Here  Dij is the diffusion coefficient t enso r  in phase space.  Equations (1.4), (1.5) nl~tst be supplemented by the 
continuity equation of the ave rage  velocity field div U = 0. 

The turbulence energy diss ipat ion ra te  (e} appea r s  in (1.5) as an external  p a r a m e t e r ,  t he re fo re  in d e t e r -  
mining i t ( i t  is n e c e s s a r y  to use corresponding exper imenta l  data or to solve a s e m i e m p i r i c a l  equation. The 
l a t t e r  is [13] 

. . . . .  C ~ [ 3~ ~. a<~>! D<8>~Dt -- 2<e>3o ~ (C81g -- C~2 <e>) =- ~ ox ~ : ~ ) ~  (1.6) 

0U 
= (t~5~-)- <~ > C ~ u ,  . g = - -  <v~,v~>'-~ ~ ,  C~1 0 8 ~ - -  t?  ~ ~ ~ -~ 

Here  CeCel,  Ce 2 a re  empi r ica l  constants  (the re la t ion  between them is obta inedby consider ing a logar i thmic  
layer ) ,  and k is the Ka rm an  constant.  

The p rope r t i e s  of Eq. (1.5) depend essen t ia l ly  on the sign defini teness  of the ma t r ix  Dij and on the d i r e c -  
t ion of the vec tor  v, s ince these  p a r a m e t e r s  de te rmine  the di rect ion of information t r a n s p o r t  in phase  space .  
The di rec t ion of v is known ahead of t ime ,  but the sign defini teness  of the ma t r i x  Dij depends,  genera l ly  speak-  
ing, on the coordinates  x k. The su r faces  on which the sign defini teness  of the ma t r ix  Dij changes can, in p r i n -  
ciple,  be s ingular .  In the given case ,  however ,  since Dij is independent of v, there  exist  no r e s t r i c t i ons  on the 
solution on the su r faces  mentioned.  

Based on Eq. (1.5), we analyze the probabi l i ty  distr ibution for  homogeneous turbulence ((Uk) =0). Tn this 
case  the equation is 

o p / a t  - r-lav~p/ov~ = (R - t/3) <e> o~p/ov~.  (1.7) 

According to the es t ima te  given in Sec. 2 { R - l / 3 )  > 0, and, consequently,  Eq. (1.7) is a parabol ic  equation 
with a posi t ive diffusion coefficient .  Assuming 67rk=O,  as  was done in [3, 4], Eq. {1.7) t r a n s f o r m s  to a parabol ic  
equation with negative diffusion coeff ic ients ,  for  which, as well  known, the Cauchy p rob lem is incor rec t .  Thus,  
account of ~r k r egu l a r i ze s  the p rob lem.  

The general  solution of Eq. (1.7) is descr ibed  by the re la t ion  

P (v, t) = ~ O (v, v 0' t, to) P (v0, to) d3v0, (1 o8) 

= --<v&0 ~ , 

[ i  ] I+) r  - - R  o-2(e) dt i d (v~>_ T-l(v~>+ R- -  (e>,(v~>]t=to=(V~> 0" 
' 2 d t  

~o 
It follows f r o m  (1.8) that the normal  dis tr ibut ion re ta ins  its f o r m  during the p r o c e s s  of turbulence  degen-  

erat ion.  As is eas i ly  seen,  for  the normal  dis t r ibut ion 67rk=0. In homogeneous i so t ropic  turbulence the normal  
distr ibution is natura l ly  bounded for  all finite t by the solution of Eq. (1.7) for  6~k=0 [3, 4], which is re la ted  to 
an inverse  parabol ic  type of equation in this case .  

The mos t  important  conclusion following f r o m  (1.8) is that for  t--~r the main  t e r m  in the asympto t i c  ex-  
pansion of the probabil ' i ty dis t r ibut ion is descr ibed  by the s e l f - s i m i l a r  dependence (<e>t)-a/2F[lu[  • (<e>t)=I/2], 

where  F is the i so t ropic  normal  dis tr ibut ion,  and 6r k is re la ted  with the following t e r m s  of this expansion.  In 
connection with the re la t ion  obtained we note that  the equation suggested in [5] does not pos se s s  this  important  
p roper ty ,  and informat ion on the initial d is t r ibut ion occurs  in the main  t e r m  at all t i m e s .  

We ment ion a s imple  solution of Eq. (1.5) for  the case  in which the turbulence energy  balance bas ica l ly  
reduces  to c rea t ion  and diss ipat ion.  All t e r m s  with spatial  de r iva t ives  can then be neglected in (1.5). By di rec t  
substi tution it can be ver i f ied that in this  approximat ion  the solution of Eq. (1.5) is a normal  dis tr ibut ion,  whose 
moment s  a r e  re la ted  to the equations for  the second moments  with omit ted convection and diffusion t e r m s  (to 
s impl i fy  the calculat ions it is convenient to t r a n s f o r m  to cha rac t e r i s t i c  functions).  The resu l t  obtained is in 
quali tat ive sa t i s fac to ry  ag reemen t  with exper imenta l  data in a logar i thmic  l aye r  [14, 15]. 

2. Steady-State Flow in a Channel.  Consider  a s t eady- s t a t e  turbulent  flow in a p l a n a r  channel, whose 
walls  coincide with the wal ls  y = 0 and y = H, while the mean  veloci ty components  a re  (ul) = U (y), (u2) = <u3} = 0. 
Equations (1.4)-(1.6) acquire  the following f o r m  in the given case  
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0 = --d(p>/Ox - -  d(uv) /dy .  0 = --a<p>/Og - -  d(v~)/dy; (2.1) 

vOP/ay + (d<uv)/dy - -  vdU/dy - -  T-lu)OP/Ou -]- (2.2) 
-p (d<v2>/dy _ T-Iv)OP/Ov - -  T-lwOP/Ow : Dc402P/Ov~Ov~ 4: 3T-~P; 

d { 3~" - 2- d<~>'~ 2,:@ (C~ g-- Cs.z (e>) -r C~--~v ~ 2---(~.> qv ) ~ ]  = O. (2.3) 
3~ 2 

The nonvanishing components of the t enso r  Dij equal to the express ions  

D33= P , - -  ( e ) - - C g ,  DI.~=D~I 2 dy 

The shea r  s t r e s s  dis t r ibut ion (uv), appear ing  in (2.2), (2.3), and in the expres s ions  for  the components  
of the t enso r  Dij, a re  found f r o m  (2.1): 

2 
<uv> = u,o [(t + 0)) y / H - -  t], (0 = (u. , /u.o)L (2.4) 

The subsc r ip t s  0 and 1 in (2.4) r e f e r  to different  channel wal ls .  The veloci ty gradient  dU/dy in (2.2) 
(the ve ry  veloci ty defect) is de te rmined  f rom the condition I u = f u P d 3 u = O  , following f r o m  the definition of the 
probabi l i ty  dis t r ibut ion of the veloci ty  f luctuations.  To show this we mult iply (2.2) by I, u, and v success ive ly ,  
and in tegra te .  As a resu l t  we obtain the re la t ions  

dI,  dluv I d<u_~v) , dU io = _  i 
- d y  - ~ O, d y  0 d y  7 d y  ~ Iu~: 

d (v ~) I d (v '2-) t [o = dg o ~ : - -  ~ l~ I ~  S r'Pd3u' Pd~u, 

Iu .  : uvPdZu. 

Since (by the boundary conditions) I v =0 for  y = 0, y =H, it follows f r o m  the f i r s t  and thi rd  re la t ions  that  
iv  =0,  ~0 = 1, 0 - < y ~  H. Only the condition I u =0 r ema ins  nontr ivial ,  allowing to de te rmine  dU/dy (we also  note 
that for  lu=0 the integral  Iuv identical ly equals the express ion  for  (uv} (2.4)). 

To solve Eq. (2.2) it is n e c e s s a r y  to ass ign  the probabi l i ty  dis tr ibut ion at y =0 and y =H. Since there  
exis ts  local  equi l ibr ium in a logar i thmic  l aye r  between turbulence energy  diss ipat ion and creat ion,  according 
to the r e su l t s  of Sec. :l the probabi l i ty  dis t r ibut ion is normal  at y =0 and y =H.  F r o m  the exis tence condition 
of momen t s  of any finite o rde r  we also have 

l imlv[hP = 0, iv] -+ c~ for any k > 0. 

The probabi l i ty  dis t r ibut ion P depends on four va r i ab les ,  causing substant ial  diff icult ies in computat ional  
poss ib i l i t ies  of numer ica l  solution of Eq. (2.2). The speci f ic  s t ruc tu re  of Eq. (2.2) makes  it poss ib le  to avoid 
this si tuation. ~ tu rns  out that  (2.2) is equivalent to an infinite s y s t e m  of equations for  functions of lower  d i -  
mensional i ty .  The f i r s t  four  equations of this  s y s t e m  a re  sufficient for  de termining the mean  veloci t ies  and 
second momen t s .  These equations,  as well  as  (2.2), a re  nonlinear integrodifferent ia l  equations,  and all r e -  
maining ones a re  l inea r  (it is in teres t ing that a s i m i l a r  si tuation is a l so  encountered in the kinetic theory  of 
gases  in considering model  equations; see ,  for  example ,  [16]). All this  is a l so  applicable to the s e m i e m p i r i c a l  
equation for  the probabi l i ty  dis t r ibut ion obtained in [5], which was ea r l i e r  used [17] in calculating the p lanar  
Couette flow, when [ (u ,v )  [=u2=eons t  (the solution of (2.2) is a normal  dis t r ibut ion in this case) .  

The f i r s t  four functions a re  re la ted  to the probabi l i ty  dis tr ibut ion by the following re la t ions :  

P2 (v) = ~ Pdudw,. d (v) = ~ uPdudw = <u>o P2, 

It~ (v) = ~ u:Pdudw = <v% P:.  tt~ (v) = y wO.pdudu, = @ %  P,. 

Integrat ing (2.2), mult iplying by ulw m (l=O, re=O; l=1 ,  m =0; l=2 ,  re=O; l=O~ m = 2 ) ,  the following equa-  
t ions a r e  obtained 

L(PO =~ T-~P:, L(J) = --S~OP.~/Ov + S...P~, (2.5) 
L(H~) =: - -T-UI~  - -  2SjO,] Ov -~- 2S,,_J @ S,~P,z. 

L(fIr --Y--lll:* - i  S4P,z, S l : dl~,,'dy[Dl (v") + D~(u") -i- Ao"-J, 

S~ id,.u@ @ ;'r @L S:, 2/~)[1r - I :~ - -  ~(D~ + C),'(@I. 
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The s y s t e m  of equations (2.3), (2o5), supplemented by the condition de termining  the veloci ty gradient  
Iu=fuPd3v=fJdv=O is c losed.  The moment s ,  not exp res sed  in t e r m s  of the functions introduced, a re  found 
f r o m  other  equations in the sys t em,  but a f ter  solving Eqs.  (2.3), (2.5). To de te rmine  <u3}, for  example ,  it is 
n e c e s s a r y  to introduce the function fu3Pdudw, whose equation, as mentioned above, is l inear .  

To choose an a lgor i thm for  numer ica l  solution of Eq. (2.5) it is important  that the coefficient  in front 
of the der iva t ive  with r e spec t  to the coordinate y change sign. Consequently,  despite  the fact  that  (2.5) is a 
parabol ic  equation, both di rec t ions  in the coordinate  y a r e  equally valid.  This is explained by the two boundary 
conditions in the coordinate  y (the theory  of equations of this type has been extensively  developed in recent  
yea r s ;  see ,  for  example ,  [18]). 

For  numer ica l  solution of Eq. (2.5) we used a scheme with counter  flow di f ferences  (with second o rde r  
approximat ion in the internal  region),  making it poss ib le  to account quite s imply  for  the equal just i f icat ion in 
the coordinate y noted above. A s i m i l a r  p rob lem for  the concentra t ion probabi l i ty  distr ibution was  e a r l i e r  
solved in [19]. Unlike [19], in the given case  the diffusion coefficient D22 can, genera l ly  speaking,  change sign 
for  seve ra l  y values ,  which mus t  be taken into account in the f in i te -d i f ference  approx imate  equations.  The 
nonlinear s y s t e m  of f in i te-di f ference  equations thus obtained was solved by an i tera t ion method.  

In ca r ry ing  out the calculat ions the s y s t e m  (2.3), (2.5) was nondimensional ized:  The dimensional  veloci ty  
was divided by u ,0 ,  and the length by H. The boundary condition corresponding to Ivl _~o became  tVlm = 
3 <v2>~/2. In the case  w = 1, due to the s y m m e t r y  of the p rob lem a solution was  sought in the in terval  0 _< y / H -  
0.5. The di f ference  grid in the var iab le  v was chosen uniform,  and in the coordinate  y - nonuniform, with a 
condensation near  the wal ls ,  as  well  as for  the case  w =0.2 and near  the point of vanishing shear  (Y0/H =0.83). 
The number  of s i tes  in the y coordinate  was 51. For  ~.~ = 1 the calculat ions were  ca r r i ed  out with two gr id  s teps  
in v, Av = IV!m/45 and Av = Ivl m /90 ,  and p rac t i ca l ly  coinciding values between the r e su l t s  w e r e  obtained. For  

= 0.2 the calculat ions were  p e r f o r m e d  with AV = I V I m / 4 5 .  

For  the empi r i ca l  constants  in the calculat ions we chose the following values:  R=0 .8  based on ex p e r i -  
ment  [20], Ce2 =2; Ce =0.13 by the r ecommenda t ions  of [22], and k=0.41 ,  the s tandard value of the Karman  
constant.  The constants  A, D 1, D2, C, and Ce 1 were  ass igned,  s ta r t ing  f r o m  exper imenta l  data,  fo r  the second 
moments  in a logar i thmic  l aye r  obtained in [14]. 

It mus t  be noted that in all calculat ions p e r f o r m e d  the diffusion coefficient D22 is posi t ive in the s t eady-  
state solution, though in the i tera t ion p r o c e s s  it changes sign mult iply.  

F igures  1 and 2 show a compar i son  between calculat ions and exper imenta l  d a t a f o r  the mean  veloci t ies  
and second momen t s  in s y m m e t r i c  (w =1) [14] and nonsymmet r i c  channels (~ =0.2) [22], r e spec t ive ly  (1 - 
{UM-U)/u , ,  where  U M is the m a x i m u m  veloci ty value, and 2 - <u2); 3 - (v2); 4 - <w2)). It is seen that in the 
calculat ions one quanti tat ively reproduces  the di f ference in posi t ions of vanishing shea r  points (Y0/H =0.83) 
and the points of vanishing velocity gradient  (Ym/H =0.73) for  a nonsymmet r i c  channel (which leads  to an effect 
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of "negative n viscosi ty) .  This effect was obtained in an ea r l i e r  calculation [21] by means of an equation for 
the shear  s t r e s s  <uv2>, in which the third moment was approximated by the gradient <uv 2> ..-. - -  (o4 /<e>)d<uv>/dy .  

We note that the calculation of all second moments  in available semiempir iea l  equations for  channel flows has, 
obviously, not yet been car r ied  out, and at the very least  there  exist no corresponding data in the l i te ra ture .  

We turn  now to resul ts  of calculating moments  of third and fourth order  and the i r  compar ison with ex-  
perimental  data. Figure 1 shows resul ts  of calculating third moments  in a symmet r i c  channel (5 - (vu 2} , 6 - 
(vw2>, 7 - <v2u>). Corresponding experimental  data were  not found in the l i te ra ture .  The resul ts  of comparing 
the calculated and experimental  data for  the symmet r i c  channel [14] are  given in Fig. 3 for  the a symmet ry  and 
excess  coefficients (1 - Au; 2 - Av; 3 - Eu; 4 - Ev; 5 - Ew, where A and E are ,  respect ively,  t~e a symmet ry  
and excess  coefficients,  and the meaning of the lower subscript  is that of the accepted notation for the velocity 
fluctuations). Figures  4 and 5 show the calculated and experimental  data in a nousymmetr ic  channel [22] (on 
Fig. 4, 1 - <vu2>i 2 - <vw2}; 3 - <v2u); and on Fig. 5 the notation coincidesw[th that of Fig. 3). The experimental  
data on Figs.  1-3 f rom [14] were  obtained for Reynolds number Re =UDH/2v =230,000 (Up is the mean velocity, 
determined f rom the flow rate),  and f rom [22] - f o r  Re =UMH/2~ =56,000, and the data on Figs. 4 and 5 were  
taken f rom [22] for Re =36,500. 

Analysis of Figs.  1-5 shows that as a whole the coincidence of calculated and experimental  data can be 
assumed quite sa t is factory.  The data presented on moments ,  as well as the analysis  of the calculated probability 
distr ibutions,  show that iU the problem under considerat ion they are  quite close to normal .  At the same t ime,  
a deviation of the distribution f rom normal  law is important,  since only this deviation causes a redistr ibut ion 
of turbulence energy in y. The resul ts  of comparing calculated and experimental  data make it possible to con- 
clude that the suggested equation for  the probabili ty distribution t ruly descr ibes  the qualitative features of this 
deviation. 

The results obtained in thiswork made it possible, in principle, to state and solve more complicated prob- 
lems than considered here, such as the description of nonequilibrium turbulent flows with signifieant deviations 
of the probability distribution from the normal distribution. Additional difficulties will primarily be associated 
with computer possibilities. The main qualitative features and mathematical properties of the equation obtained 
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for the velocity probabil i ty distribut&:m were  ar?al.yzed ir~. t}?is wo~:ko Thi:s analysis is a necessa ry  prei[mina~'y 
step p r io r  to solving more  coml~liea,f:ed pr~b!~ms~ The author is deepiy grateful to Vo ~'i., TevTev for positive 
c r i t i c i sm,  useful comments ,  and support,  and to V. R. Kuznetsov for a number  of cr i t ical  commen~s. 
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